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Abstract: Alzheimer’s disease (AD) is the most common cause of dementia worldwide and yet
remains without effective therapy. Amongst the many proposed causes of AD, the mitochondrial cas-
cade hypothesis is gaining attention. Accumulating evidence shows that mitochondrial dysfunction is
a driving force behind synaptic dysfunction and cognitive decline in AD patients. However, therapies
targeting the mitochondria in AD have proven unsuccessful so far, and out-of-the-box options, such
as hibernation-derived mitochondrial mechanisms, may provide valuable new insights. Hibernators
uniquely and rapidly alternate between suppression and re-activation of the mitochondria while
maintaining a sufficient energy supply and without acquiring ROS damage. Here, we briefly give an
overview of mitochondrial dysfunction in AD, how it affects synaptic function, and why mitochon-
drial targeting in AD has remained unsuccessful so far. We then discuss mitochondria in hibernation
and daily torpor in mice, covering current advancements in hibernation-derived mitochondrial
targeting strategies. We conclude with new ideas on how hibernation-derived dual mitochondrial
targeting of both the ATP and ROS pathways may boost mitochondrial health and induce local
synaptic protein translation to increase synaptic function and plasticity. Further exploration of these
mechanisms may provide more effective treatment options for AD in the future.

Keywords: mitochondrial dysfunction; Alzheimer’s disease; daily torpor; hibernation-derived
compound; SUL-138

1. Introduction

Alzheimer’s disease (AD) is the most prevalent neurodegenerative disease worldwide,
and as the population ages, the numbers are only expected to rise [1]. So far, despite decades
of research and efforts, no cure has been found for this devastating disease. Treatments
targeting either of the two main pathological hallmarks of the AD brain, amyloid-beta (Aβ)
and tau aggregation, have been mostly unsuccessful, driving the search for alternative
treatable causative agents of AD. A growing body of evidence supports a causal role of
mitochondrial dysfunction in AD [2–6]. This has led to the mitochondrial cascade hypoth-
esis of AD, proposing a progressive decrease in mitochondrial fitness as causative factor
in AD. Until to now, small molecule compounds with antioxidant (i.e., ROS-scavenging)
properties, such as vitamin E and curcumin, have been the most studied as mitochon-
drial targeted treatments in AD [7–9]. While antioxidants show some promising results in
in vitro and mouse models of AD, they have failed to restore cognitive function in clinical
studies, possibly due to poor blood–brain barrier permeability and the singular effect of
ROS scavenging without improving mitochondria function itself [9,10].

Remarkably, hibernating animals show exceptional brain plasticity when alternating
between torpor (periods of hypothermia and hypometabolism) and arousal (periods when
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metabolism and body temperature return to normal) [11–19]. Hypometabolism during
torpor is caused by the active shutdown of the mitochondria, which is rapidly reversed
upon arousal without causing ROS damage. Depending on the species and environmental
conditions, seasonal hibernators, such as ground squirrels and dormice, employ deep and
long torpor bouts (1–3 weeks typically at ~5 ◦C), whereas daily hibernators, such as Siberian
hamsters and mice, employ short (4–10 h at ~17 ◦C) torpor bouts [20,21]. The regulation
of mitochondrial activity in hibernation coincides with extensive neuronal plasticity in
many brain regions, ranging from complete dendritic retraction and restoration in seasonal
hibernators to specific synaptic changes during daily torpor in mice [11,22,23]. In addition,
daily torpor in mice increases the levels of mitochondrial complex I and IV proteins,
proteins involved in synaptic plasticity, long-term potentiation in the hippocampus, and
restoring memory function in an AD mouse model [23]. Interestingly, mimicking arousal-
induced mitochondrial changes using the 6-chromanol SUL-138, which supports complex I
and IV function while suppressing ROS production, was able to mirror these effects [24].
This suggests that hibernation-associated mitochondrial regulation could be beneficial in
treating AD-related synaptic and mitochondrial impairments.

In this review, we briefly discuss mitochondrial deficiencies that lead to synaptic
impairment in AD and mitochondrial targeted intervention strategies that have so far
proven insufficient in improving AD clinical outcomes. Next, we discuss mitochondria in
hibernation and how hibernation-derived mitochondrial targeting offers new and unique
opportunities in the search for novel treatment strategies against AD, including current
advances. Finally, we propose a model through which hibernation-associated mitochondrial
activation could lead to increased synaptic plasticity relevant for the treatment of cognitive
decline in AD.

2. Mitochondria in AD
2.1. Mitochondrial Dysfunction in AD: The Mitochondrial Cascade Hypothesis

The mitochondrial cascade hypothesis, which originated in 2004 [25], is gaining
attention, and by now, a large body of evidence implicates mitochondrial dysfunction as a
fundamental causative mechanism in AD [6,26]. The hypothesis states that a progressive
decrease in mitochondrial fitness, excess release of reactive oxygen species (ROS), and
decreased ATP production are important contributors to pathological protein aggregation,
decreased synaptic plasticity, and cognitive decline in AD.

Already over 40 years ago, electron microscopy and PET imaging revealed altered mi-
tochondrial morphology and decreased glucose metabolism in AD brains [27], a parameter
that appears superior to tau or Aβ pathology in predicting AD progression [28]. Mitochon-
drial deficits, as reflected in increased oxidative stress (e.g., free radical production, lipid
peroxidation, oxidative protein damage) [29] and altered calcium homeostasis [30], are
observed in AD patients prior to histological and clinical abnormalities [31–33]. By now, it
is clear that the mitochondria are differentially affected in early- vs. late-stage AD and that
neurons and glia may be differentially affected during disease progression, providing new
opportunities for early diagnosis and intervention [34].

Interestingly, caloric restriction, intermittent fasting, and ketogenic diets that alter
metabolic input to mitochondria have shown mild beneficial effects in animal models of
neurodegenerative disorders and human clinical trials [35,36]. Consequently, mitochondria
should be seriously considered as potential pharmacotherapeutic targets in the treatment
of AD.

2.2. Glucose Dysmetabolism and Oxidative Stress: An ATP/ROS Disbalance in AD

The brain is the organ with the highest energy demand, and therefore, it relies heavily
on glucose (the predominant substrate for the human adult brain under physiological
conditions) to efficiently produce ATP. The production of ATP occurs through glycolysis,
the tricarboxylic acid (TCA) cycle, and the oxidative phosphorylation system (OXPHOS)
via the electron transport chain (ETC) [6]. Neurons are mostly oxidative, and glial cells
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process glucose glycolytically, with the astrocyte–neuron lactate shuttle metabolically cou-
pling the different cell types [37]. The impairment of glucose metabolism in AD brains is
detrimental for the ATP levels necessary for normal functioning of neurons [29,38–41]. A
main component in the dysregulation of glucose metabolism is oxidative stress caused by
ROS, an inevitable, albeit normally well-handled, by-product of oxidative phosphorylation,
produced mostly by complexes I and III. Mitochondrial dysfunction caused, e.g., by aging
accumulated damage or genetic defects, leads to increased ROS production, causing ox-
idative modification of the enzymes involved in glycolysis and the TCA cycle, reducing
their efficiency and creating a negative feedback loop that further impairs mitochondrial
function [6,29,42] (Figure 1). In addition, many studies have shown reduced levels of all
five complexes of the ETC in AD brains, leading to further impairment of ATP produc-
tion [3,43–47]. Moreover, the efficiency of all five complexes is lowered in AD, with a
particularly clear defect in cytochrome c oxidase (complex IV), leading to increased ROS
levels and further ATP deficiency [48].
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originates, mitochondrial dysfunction plays an eminent role in synaptic impairment in 
AD [49]. Synaptic dysfunction is an early pathological feature and correlates highly with 
memory loss in AD [50–52]. Neurons heavily rely on healthy functioning mitochondria to 
meet the high energy demands, e.g., for mobilizing synaptic vesicles, synaptic transmis-
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Figure 1. Mitochondrial impairments in AD. The major energy source for the brain is glucose,
which is metabolized to ATP via glycolysis, pyruvate metabolism, the tricarboxylic acid (TCA)
cycle, and the oxidative phosphorylation system (OXPHOS) via complexes I–V in the electron
transport chain. Mitochondria also produce ROS as by-products of activity in the OXPHOS system.
Other, less prominent inputs into the OXPHOS system are via fatty acid degradation and oxidation
(FAD and FAO) and amino acid metabolism. In AD, excess levels of ROS, probably due to aging-
related generation from complexes I and III, leads to oxidative damage to enzymes involved in
glycolysis/pyruvate metabolism, the TCA cycle, and the OXPHOS system, thus augmenting ATP
deficits, and ultimately leading to high ROS and low ATP levels found in AD (red arrows).

2.3. Mitochondrial Impairment Leading to Synaptic Dysfunction in AD

Whether or not the mitochondrion represents a true causative agent from which AD
originates, mitochondrial dysfunction plays an eminent role in synaptic impairment in
AD [49]. Synaptic dysfunction is an early pathological feature and correlates highly with
memory loss in AD [50–52]. Neurons heavily rely on healthy functioning mitochondria to
meet the high energy demands, e.g., for mobilizing synaptic vesicles, synaptic transmission,
maintaining ion gradients for action potential generation, and propagation and local mRNA
translation for synapse function and synaptic plasticity [6,49]. Decreased ATP levels in
AD brains can interfere with each of these processes [53–56]. In addition, increased ROS
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levels in AD brains can lead to impaired mitochondrial Ca2+ buffering, which in turn,
leads to the loss of the microtubule assembly-dependent transport of synaptic vesicles and
mitochondria, further lowering the energy supply to synapses and additionally impairing
synaptic transmission [57,58].

2.4. Mitochondrial Targeted Strategies in AD

Drugs that effectively target Aβ or Tau pathological protein aggregation have not
lived up to their therapeutic promise in AD yet. In the context of the mitochondrial cascade
hypothesis, therapeutics targeting mitochondria have been tested both in preclinical and
clinical settings. As such, antioxidants are obvious candidates to mitigate ROS damage [29].
Treatment with antioxidants, such as Vitamin E and C [8,59,60] and Ginkgo biloba ex-
tract [61,62], a natural antioxidant extensively used in Chinese traditional medicine, have
not entered the AD drug market yet due to limited effects in patients. However, recent
studies do show mildly positive effects for Ginkgo biloba extract [63,64], but the final call
on these treatments has not been made yet. Another group of mitochondrial compounds
that have been shown to counteract mitochondrial dysfunction and oxidative stress are
phenylpropanoids [65–67]. For example, curcumin, a commonly known spice, showed
promising results on oxidative damage and Aβ plaque burden in an APP/PS1 AD mouse
model [68]. However, positive clinical outcomes in humans remain absent, presumably
due to low bioavailability [69,70]. Apart from relieving ROS levels, stimulating or protect-
ing mitochondrial ATP production has been attempted using, for example, oxaloacetate
(OOA) [71], an intermediate of the TCA cycle, or precursors of nicotinamide adenine
dinucleotide (NAD) [72], an intermediate common to several mitochondrial metabolic
pathways, including glycolysis, TCA cycle, and oxidative phosphorylation, but clinical
efficacies still remain to be studied [65]. Interestingly, mild inhibition of complex I of the
OXPHOS system, e.g., by the small molecule tricyclic pyrone compound CP2, has been
suggested as a potential treatment strategy against AD, with positive effects in the APP/PS1
mouse model of AD [73,74]. Likewise, the inhibition of complex V (ATP synthase) using
the curcumin derivative J147 preserves mitochondrial homeostasis and prevents cognitive
decline in SAMP8 mice [75,76]. It is thought that the inhibition of complex I, while low-
ering ATP production, exerts its beneficial effects by triggering a mitochondria-mediated
integrated stress response and due to lower ROS production via complex I [72] However,
clinical studies with non-specific complex I inhibitors, such as metformin and resveratrol,
have been unsuccessful, possibly due to limited bioavailability and non-specificity [77,78].
Although the general consensus is that mitochondria should be seriously considered as
targets against AD, issues with bioavailability, specificity, efficacy, and side effects of mi-
tochondrial targeting have hindered progression in this field beyond preclinical findings.
Thus, novel strategies and out-of-the-box approaches are needed to overcome this hurdle.

3. Mitochondria in Hibernation
3.1. Metabolic Adaptation during Hibernation

Hibernation is a natural phenomenon during which animals escape energetically chal-
lenging environmental conditions by entering torpor, a state of extreme hypometabolism
and hypothermia. During torpor, hibernators show a drastic, up to 98%, reduction in
metabolic rate [79]. Though its exact molecular underpinnings are still poorly understood,
torpor features the halt of glycolysis, which is established by changing the levels and activi-
ties of several key enzymes involved in metabolic conversion during glycolysis, pyruvate
metabolism, and the TCA cycle, including glycogen phosphorylase, pyruvate dehydro-
genase, phosphofructokinase, pyruvate kinase, and citrate synthase [79–84] (Figure 2).
ATP production is further halted due to a reduction in the efficiency (but not levels) of
complexes I and II [85] of the OXPHOS and of the mitochondrial H2S oxidizing enzyme
sulfide: quinone oxidoreductase (SQR), which provides electrons to the ETC via coenzyme
Q [86,87]. The activities of these OXPHOS proteins are thought to be regulated though
allosteric inhibition by oxaloacetate, a TCA cycle intermediate that accumulates due to
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decreased activity of TCA cycle enzymes, and through posttranslational modifications
by intramitochondrial kinases and deacetylases [88]. In addition, reduced efficiency of
H2S-oxidizing SQR and increased levels of H2S-synthesizing enzymes in the brain, mainly
cystathionine beta-synthase (CBS), leads to an increase in H2S levels during torpor, which
inhibit complex IV (cytochrome c oxidase) function of the OXPHOS system [89]. The lim-
ited remaining metabolism during torpor shifts to fatty acid metabolism [81,83,90]. During
arousal, reactivation of the mitochondria occurs in a matter of hours. This reactivation
initially leads to ‘non-shivering thermogenesis’ via ATPase uncoupling in brown adipose
tissue (BAT). Further rewarming is caused as a by-product of reinstated ATP production in
other tissues, such as skeletal muscle (‘shivering thermogenesis’). Lipids are the predomi-
nant fuel during the high-energy demanding arousal phase [79,83,84,91]; however, other
non-lipid fuels, such as carbohydrates and glycogen, have also been shown to be recruited
upon arousal in 13-lined ground squirrels [92]. In addition, changing mitochondrial archi-
tecture during hibernation through fission and fusion has been suggested as a potential
regulator of metabolism during hibernation [93]. Even though gaps in our knowledge on
mitochondrial adjustments during hibernation remain, the abovementioned mechanisms
involved in healthy mitochondrial regulation might harbor new AD treatment options.
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Figure 2. Mitochondrial regulation during hibernation. During the torpor phase of hibernation,
glycolysis is halted and remaining energy metabolism shifts to fatty acid metabolism (FAD and
FAO) (purple arrows). Enzymes involved in glycolysis, pyruvate metabolism, and the TCA cycle
are reduced and/or less efficient. Efficiencies of complexes I and II of the OXPHOS system are
drastically reduced through reduced input from the TCA cycle, and posttranslational modifications
and allosteric hindrance by oxaloacetate (OAA), an accumulated TCA cycle intermediate. Increased
levels of H2S due to decreased H2S oxidation efficiency of SQR and increased production of H2S by
CBS, in turn inhibit complex IV function. ROS damage is prevented due to the downregulation of
complex I, which normally produces a large fraction of ROS in the OXPHOS system. In addition,
UCP1 upregulation leads to uncoupling of the OXPHOS system, thereby altering its redox state and
inhibiting ROS production. Finally, antioxidant levels, e.g., ascorbate, are higher during hibernation,
directly neutralizing ROS.

3.2. Defense Mechanisms against ROS Damage during Hibernation

Interestingly, the suppression and re-activation of mitochondrial function during
torpor and arousal occurs while maintaining sufficient energy supply and without the oc-
currence of ROS damage normally seen during rewarming and reperfusion [84,94]. Excess
substrate at—and reverse electron flux through—complex II during ischemia–reperfusion
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is usually a significant source of electrons for ROS production at complex I [84,85]. There-
fore, protection against ROS production during arousal has been linked to the significant
reduction in complex I and II function during torpor [95]. In addition, brown adipose
mitochondria, which uncouple respiration from ATP for non-shivering thermogenesis and
release the energy of the proton gradient directly as heat, are also protected against ROS
damage. This respiratory uncoupling of BAT mitochondria is due to relatively high levels
of uncoupling protein 1 (UCP1), which reduces proton motive force and is thought to alter
the redox state of the respiratory chain, effectively reducing the production of ROS [96].
Other putative oxidative stress protective strategies associated with hibernation are the
increased levels of antioxidants, such as ascorbate and glutathione during arousal [90,97].

ROS damage preventing strategies observed during hibernation have been of par-
ticular interest for the ischemia–reperfusion field, as, in humans, the overproduction of
reactive oxygen species (ROS) upon reperfusion jeopardizes cellular integrity [98,99]. Fur-
ther exploiting the mechanisms that hibernators use to maintain sufficient mitochondrial
ATP production without ROS damage may thus also represent a promising therapeutic
strategy in AD, given that mitochondrial dysfunction and subsequent ATP/ROS imbalance
are prominent in the AD brain.

3.3. Mitochondria in Daily Torpor Mice

Though long overlooked, laboratory mice are also capable of entering a hibernation
state, particularly daily torpor [23,100–104]. They exert facultative daily torpor as a response
to energetic challenges, such as low food availability or increased energy expenditure.
Torpor in mice is generally induced using a fasting protocol, completely omitting food
availability, or a work-for-food protocol, in which mice have so-called high foraging-costs,
typically due to wheel running as a requirement to access food [105,106]. Both ultimately
lead to a negative energy balance that is compensated for by daily torpor cycles with
body temperatures as low as 21 ◦C and a metabolic rate reduction up to 70%. It has been
found that, like seasonal hibernators, the efficiency of complexes I and II of the OXPHOS
system and of ADP phosphorylation is reduced during daily torpor in Balb/c, CD1, and
C57BL/6N mice [95]. In addition, we observed robust hippocampal mitochondrial protein
regulation during daily torpor in C57BL/6 mice [23]. Notably, many of these mitochondrial
proteins were part of electron transport chain complexes I and IV, previously shown to be
involved in mitochondrial activity regulation during hibernation [79,84,85,88]. The effects
of arousal on mitochondrial protein levels are in line with a study showing that leptin,
which is reduced during torpor and reinstated during arousal, normally regulates several
OXPHOS proteins [102,107]. It would be interesting to additionally assess complex activity
in daily torpor mice in comparison to parallel data from previous studies on mitochondrial
regulation during hibernation.

4. Hibernation-Derived Mechanisms of Mitochondrial Targeting: Is It Relevant for the
Treatment of AD?
4.1. Targeting UCP1

The significance of hibernation-derived mitochondrial activation in neuronal protec-
tion has been demonstrated in a study that compared iPSC-derived neurons from the
hibernating arctic squirrel to iPSC-derived neurons from humans during cold exposure.
They found that neurons derived from the arctic squirrel exerted cell autonomous protec-
tion against cold-induced stress, which normally results in ROS overproduction, lysosomal
membrane permeabilization, and consequential microtubule destruction. This neuronal
protection seems to be conferred via torpor-associated mitochondrial uncoupling [108], as
mimicking this effect using the mitochondrial uncoupler BAM15 was able to protect against
cold-induced stress in human iPSC-derived neurons. The transient overexpression of
mitochondrial uncoupling proteins UCP1 or UCP2 likewise produced cold-stable neurites
supporting the theory that the protective effects of BAM15 indeed rely on mitochondrial
uncoupling. BAM15 has also been tested in a C. elegans model of Alzheimer’s disease as
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Alzheimer’s disease could also benefit from this neuronal protection from ROS damage.
Indeed, BAM15 was able to relieve neurodegeneration and aging in this model, as it re-
duced abnormal shapes of mechanosensory neuronal cells and maintained touch-response
and short-term memory [109]. However, further studies are needed to substantiate causal
effects of mitochondrial uncoupling on neuronal protection, and relevance for AD in other
more complex AD models. The notion that mitochondrial uncoupling can protect neu-
rons from ROS damage and devastating microtubule destabilization that normally occurs
during cold-induced stress, is in line with the limited damage that occurs during extreme
hypothermia in torpor, which is paralleled by a strong upregulation of UCP1 in brown
adipose tissue mitochondria and neuronal mitochondria during this phase [110].

4.2. Targeting Mitochondrial Ca2+ Handling

Alterations in mitochondrial calcium homeostasis during hibernation confers another
benefit of hibernation that could be interesting for AD treatment. Intracellular calcium
handling is important for regulating membrane excitability, signal transduction, neuro-
transmitter release, synaptic plasticity, cell cycle, cell migration, and axon growth. It is
regulated through plasma membrane channels and intracellular storage in the endoplasmic
reticulum, Golgi apparatus, and mitochondria. Disrupted Ca2+ homeostasis, e.g., following
NMDA receptor activation, leads to mitochondrial dysfunction and to rapidly increasing
mitochondrial Ca2+ levels, resulting in increased mitochondrial membrane depolarization
and excitotoxic cell death [30,111–113]. During hibernation, the mitochondrial calcium
uniporter (MCU) complex, important for transporting calcium into the mitochondrion,
and leucine zipper and EF-hand containing transmembrane protein 1 (LETM1), which
mediates calcium release from the mitochondrion, are upregulated in skeletal muscle in
Daurian ground squirrels [114,115]. It is thought that the regulation of mitochondrial
calcium handling via these complexes helps hibernators to maintain intracellular Ca2+

homeostasis during the extremes of hibernation, for example, in the heart and skeletal
muscle, which, otherwise, would suffer from cytoplasmic Ca2+ overload during inactiv-
ity [114,116]. In addition, it has been shown that a high rate of mitochondrial Ca2+ uptake
lowers the OXPHOS proton-motive force sufficiently to cause a transient reversal of the
ATP synthase, which is necessary for ATP synthesis shutdown during torpor. Studies on
Ca2+ homeostasis in the brain tissue of hibernators are scarce; however, one study reported
reduced intracellular Ca2+ levels in ground squirrel cerebral synaptosomes during torpor,
which is thought to increase tolerance against prolonged ischemia during hibernation [117].
Calcium dyshomeostasis in AD leads to intracellular calcium overload, resulting in neu-
rodegeneration via its effects on mitochondrial- and synaptic dysfunction and affecting the
production and aggregation of Aβ peptides and tau hyperphosphorylation [118]. Therefore,
several studies have suggested the potential of reducing mitochondrial Ca2+ uptake as a
potential treatment strategy against AD. MCU deletion improved mitochondrial function
and prevented neurodegeneration in C. elegans expressing AD relevant mutations in their
PSEN homolog, sel-12 [119], and in a 3xTG mouse model of AD [120]. In addition, a
knockdown of endogenous MCU rendered primary cultured neurons resistant to oxidative
stress [121], and the MCU inhibitor Ru360 prevented mitochondrial Ca2+ uptake in mice
in vivo after exposure to soluble Aβ [122]. However, all these studies focused on inhibiting
MCU activity, thereby solely preventing Ca2+ influx into the mitochondrion. Yet, hiberna-
tors upregulate both MCU and LETM1, stimulating both Ca2+ import and export, possibly
to enhance the overall calcium buffering capacity of the mitochondrion. Further studies
should explore this dual targeting of mitochondrial calcium handling as a neuroprotective
strategy in AD.

4.3. Targeting H2S

H2S is a gasotransmitter, similar to NO and CO, and regulates numerous cytoprotective
and physiological functions through its anti-oxidative and anti-inflammatory actions [123].
Interestingly, in 2005, researchers found that low doses of H2S inhalation led to suspended
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animation (a torpor-like state) in mice [124]. Though questions remain regarding the low
O2 levels used in this study (17.5%, which is hypoxic) [94], it sparked interest in the role
of H2S in hibernation, and it is now thought that H2S plays a key role in suppressing
mitochondrial activity during torpor [87]. As previously mentioned, the level of H2S is
regulated through SQR and CBS, and H2S inhibits complex IV function by binding Fe2+ in
heme. The role of H2S in AD has also been gaining attention over the years. AD patients
show lower levels and reduced activity of the H2S-producing enzyme CBS and lower
levels of H2S in the brain, which correlate to AD severity [125–127]. Increasing H2S levels
as a therapeutic strategy against AD has been extensively reviewed [128,129]. Indeed,
increasing H2S levels similar to what is seen during hibernation leads to the relief of AD-
related pathophysiologic outcomes in various animal and cell models of AD. For example,
NaHS, a H2S donor, ameliorated Aβ-induced damage in PC12 cells by reducing the loss of
mitochondrial membrane potential and attenuating the increase in intracellular ROS [128].
In addition, increasing H2S levels in the brain of AD animal models via a donor or through
a diet rich in taurine, cysteine, folate, B12, and betaine, has been shown to be beneficial
against oxidative stress, neurodegeneration and cognitive impairment [129,130]. However,
the clinical translation of these results is hindered by the complex dosage regimen of a H2S
donor, requiring multiple high doses, and H2S’s potential toxicity at such high doses [129].
Currently, an H2S-targeting compound, the CBS activator s-adenosyl methionine (SAM),
has entered a phase II clinical trial, studying its effects in patients with mild cognitive
impairment. The results will hopefully shed more light on the potential of H2S-based
treatments in AD patients [131].

4.4. Targeting Complex I or II

Recently, the mRNA expression levels of OXPHOS subunits, primarily complex II,
were shown to be decreased during torpor in 13-lined ground squirrels, while the levels of
TCA cycle intermediates prior to complex II were simultaneously increased, suggesting that
hibernation halts the TCA cycle input towards OXPHOS through complex II inhibition [132].
This is thought to prevent ROS formation during hibernation via blocking reverse electron
transport from complex II to complex I. Mimicking this effect via blocking complex II with
dimethyl malonate (DMM) was able to rescue hypoxia damage in hypoxic human SH-SY5Y
differentiated neurons and in vivo in ischemic stroke in mice [132]. In addition to complex
II inhibition, the inhibition of complex I, which is also downregulated during hibernation,
has been suggested as a potential strategy against AD as well, with positive effects in
an APP/PS1 mouse model of AD [73,75]. However, as mentioned previously, clinical
studies with non-specific complex I inhibitors, such as metformin and resveratrol, were
not successful [77,78]. Solely targeting ROS damage by mimicking torpid mitochondria
without stimulating ATP production might, therefore, be too unidirectional in the treatment
of AD.

4.5. Dual Targeting: Improving ATP/ROS Balance

The notion that laboratory mice are also capable of daily torpor [23,100,102–104,133–135],
showing bouts of torpor and arousal of several hours instead of days to weeks, offers the
opportunity to explore hibernation in a standard animal model and in a relatively short
timeframe, with AD mouse models readily available to study its relevance for AD. We
found an upregulation of mitochondrial complex I and IV proteins during arousal after
torpor in mice, which was paralleled by a significant increase in the levels of proteins
involved in synaptic plasticity, such as AMPAR/NMDA receptor subunits, CAMK2A, and
SHISA6/7, and in long-term potentiation and learning and memory [23]. Interestingly,
a single torpor bout was sufficient to rescue memory impairment in an APP/PS1 AD
mouse model. These observations suggest that arousal-induced mitochondrial activation
has the potential to enhance synaptic transmission and plasticity. Therefore, hibernation-
derived molecules, which are based on the protective mechanisms that hibernators utilize
to withstand damage occurring during the repeated cycles of torpor and arousal, might be
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advantageous in treating AD. The 6-chromanol derivative SUL-138 was selected as a lead
compound through the screening of a small molecule library in a hypothermia-rewarming
(H/R) cell model. The mode of action of SUL-138 constitutes mitochondrial complex I and
IV activity preservation under pathological conditions [24], resulting in the maintenance
of tissue energy levels (i.e., ATP) and a reduction in oxidative stress (i.e., ROS production
and lipid peroxidation), thereby mimicking the arousal-associated mitochondrial state
(Figure 3). Three months of the oral administration of SUL-138 increased synaptic trans-
mission and memory performance in both APP/PS1 and wildtype mice, similar to a single
torpor/arousal cycle [24]. Notably, improved memory in SUL-138-treated APP/PS1 mice
was accompanied by a partial rescue of synaptic protein expression, and a significant
upregulation of mitochondrial proteins involved in fatty acid degradation and oxidation
and a substantial decrease in brain amyloid plaque load and size. Collectively, these data
suggest that SUL-138 not only activates complexes I and IV but also alters metabolic input
in the mitochondrion, possibly further enhancing ATP production while limiting ROS.
However, direct measurements of mitochondrial respiration are needed to confirm this.
The SUL-138-evoked long-term metabolic adaptations in mitochondria, and its effects
on synaptic transmission and memory performance, illustrate that targeting mitochon-
drial bioenergetics might be a promising strategy to prevent cognitive impairment in AD.
Interestingly, SUL-138 supports complex I and IV activity without affecting basal mito-
chondrial membrane potential or causing apparent mitochondrial toxicity [136]. Moreover,
hibernation-inspired 6-chromanols prevent organ damage in various preclinical models
of conditions or diseases with impaired mitochondrial function, including whole body
cooling [137], renal ischemia/reperfusion [136], COPD [138,139], and diabetes [140]. As
SUL-138 is permeable through the blood–brain barrier, it would be a suitable candidate to
also treat AD. In this regard, it is important to further explore how dual hibernation-derived
mitochondrial targeting would be able to increase synaptic plasticity in AD.
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Figure 3. Targeting ATP/ROS balance via mitochondrial stimulation with SUL-138. During arousal
from torpor, complexes I and IV are upregulated, and while ROS remains low, ATP levels are
reinstated (orange arrows). The 6-chromanol SUL-138 mimics arousal mitochondria after daily torpor
in mice by stimulating complex I and IV function, thereby reducing ROS levels and increasing ATP
levels. SUL-138 affects complex IV function via the reduction of cytochrome c. In addition, SUL-138
changes metabolic input towards the oxidative phosphorylation system (OXPHOS) to fatty acid
degradation and oxidation (FAD and FAO) (green arrows).
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5. Hibernation-Derived Mitochondrial Reactivation and Synaptic Plasticity:
A Possible Link with Relevance for AD Treatment

As discussed, hibernation affects both mitochondrial function and synaptic plasticity,
and it is interesting to speculate how the two may be linked. LTP and other fast-acting
postsynaptic plasticity processes are often facilitated by increased synaptic protein trans-
lation, a process that is impaired in neurodegenerative diseases, such as AD [54,141–143].
We postulate that mitochondrial priming increases synaptic de novo protein translation of
postsynaptic proteins, which in turn, increases LTP and memory formation (Figure 4), and
that mitochondrial dysfunction in AD directly impacts synaptic function and cognition.
Future studies should aim to substantiate this, e.g., by measuring translation in isolated tor-
por/arousal and SUL-138-treated synaptoneurosomes [144–146] as a measure of synaptic
local de novo protein translation, and by the short-term selective inhibition of complex I
and IV activation during arousal or SUL-138 treatment, while assessing local translation,
synaptic plasticity, and memory.
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Figure 4. Proposed model for beneficial effects of hibernation-derived mitochondrial activation on
synaptic plasticity. Alzheimer’s disease mitochondria have an imbalance in ROS/ATP, with excess
ROS production and reduced ATP levels. This leads to pathological secondary outcomes, including
inhibited local translation of synaptic plasticity proteins, which depends heavily on sufficient ATP
supply. This local translation is important for synaptic maturation, which is essential for LTP and
memory, both impaired in AD (red arrows). Mitochondrial reactivation during arousal after torpor
offers a unique state in which ROS formation is inhibited and ATP production is reactivated. In
daily torpor mice, this arousal phase is characterized by an increase in complex I and IV levels
(orange arrows). SUL-138 mimics this reactivation of mitochondria by stimulating complex I and IV
function, while preventing ROS formation (green arrows). Therefore, both torpor and torpor-derived
mitochondrial activation by SUL-138 can lead to the enhanced local translation of synaptic plasticity
proteins (e.g., AMPA/NMDA receptor subunits, auxiliary subunits, and neurofilaments), and hence,
may lead to enhanced LTP and memory formation capacity.

6. Limitations of Translating Mitochondrial Adaptations in Hibernation to AD

Although increasing evidence points to a significant role of mitochondrial dysfunction
in AD [26,147,148], the role of amyloid plaques and hyperphosphorylated tau tangles as
pathological actors in the disease should not be ignored. We found that a 3-month treatment
with a hibernation-derived mitochondrial targeting SUL compound led to a significant
reduction of amyloid plaque size and numbers in APP/PS1 mice [24], indicating that
targeting mitochondria can reduce amyloid burden. However, the exact mechanism of
action remains unclear. The effects could be explained by either a direct effect on increased
mitochondrial health of amyloid deposition or clearance, or by currently unknown indirect
effects of the SUL compound on, e.g., enzymes acting on amyloid production or clearance.
Future studies should focus on demonstrating a causal role of mitochondrial targeting
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in decreasing plaque load, for instance, by applying complex I and IV inhibitors during
SUL treatment. In addition, the effects of the SUL compound on tau pathology should be
investigated in appropriate cell or animal models.

Previous experience has taught that translating therapeutic strategies that show
promising effects in AD mouse models to human treatment is often unsuccessful [149,150].
This might be due to AD mouse models mirroring only limited aspects of human AD
pathology. Primate models or human iPSC-derived cell cultures may be more suitable
and could be used to further substantiate the therapeutic value of hibernation-derived
mitochondrial targeting against AD.

Finally, the complex etiology of AD prompts multitargeted therapeutic approaches [31],
especially as we currently only diagnose AD in later stages of disease progression, where
the disease already affects many different systems. The combined targeting of, for example,
amyloid-beta, tau, and mitochondria, might improve treatment efficacy [151]. This would
ultimately also lead to personalized treatment for a disease that is increasingly recognized
as being heterogenic in its pathology and clinical outcome [152,153].

7. Conclusions

The beneficial effects of dual targeting interventions, improving the fitness of mi-
tochondria not only by reducing ROS but also via stimulating ATP production, offers
new opportunities in the search for novel AD treatment strategies. This adds to various
studies showing advantageous mitochondrial mechanisms employed by hibernation, with
relevance for AD treatments but with limited clinical efficacy so far. How mitochondrial
(re)activation enhances synaptic plasticity and reduces AD pathology in AD mice remains
to be explored. We suggest enhanced synaptic plasticity, at least in part, relies on the
stimulation of the local translation of synaptic plasticity proteins. Altogether, nature’s
solution to maintain mitochondrial health in energetically unfavorable conditions may
hold substantial promise for the future of AD treatment.
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